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ASYMPTOTIC THEORY OF NONLINEAR MASS TRANSFER IN
SYSTEMS WITH INTENSE MASS EXCHANGE

Khr. Boyadzhiev UDC 532.7

Introduction. Nonlinear effects in mass transfer processes are a consequence of the
existence of very high concentration gradients. Each of them affects differently the rate
of mass transfer, but all of their actions are mutually related. Nevertheless, for theoret-
ical investigation of nonlinear mass transfer it is necessary to classify the basic effects.

A primary nonlinear effect can occur when the dependence of the mass flux on the con-
centration gradient is nonlinear. This nonlinearity is usually accounted for by the concen-
tration dependence of the diffusion coefficient.

Another nonlinear effect, manifested even at concentration gradients which are not too
high, is related to the concentration dependence of viscosity, diffusion, and other coeffic-
ients. This effect must be accounted for in a number of cases [1], but its effect on pro-
cess rates cannot change the kinetics of mass transfer qualitatively.

From the theoretical and practical points of view the interest in the nonlinear effect
is due to generation of secondary flow resulting from intense mass exchange [2, 3].

Mass transfer through an interphase boundary is always associated with momentum trans-
fer. In cases of intense mass exchange, however, this transfer is commensurate with momen-
tum transfer of the fundamental flow. Thus, intense mass exchange induces secondary flow at
the phase separation surface. The rate of these flows is normal with respect to the inter-
phase surface.

The rate of induced flow resulting from intense mass exchange v, can be determined [4]
from the mass flux through the phase separation surface:
MD dc
" od on’
where M, D, and ¢ are the molecular mass, diffusion coefficient, and transferred material

coefficient, p% is the specific mass of the medium at the phase separation surface where
mass transfer occurs, and 3/8n is the normal derivative to the interphase surface.

(1)

The new velocity component vy, (within the linear theory of mass transfer v, = 0) af-
fects substantially the hydrodynamics of the fundamental flow. Thus, the velocity vector
v depends on the concentration distribution, and the left hand side of the convective dif-
fusion equation

vgrad c=div (D grad ¢)
is nonlinear.

The induced velocity at the phase separation boundary v, is the reason for convective
transport, i.e., the mass flux through the phase boundary has diffusion and convective com-
ponents:

MDo* dc
]::__AAD-QZ %—A@*al;:w————él~—-—, (2)
on 00 on
where p* = p§ + Mc*, and c* is the transferred material concentration at the phase boundary.

It is seen from (2) that the nonlinear effect, as a result of induced velocity vy, has
a dual manifestion [5].
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The first part of the nonlinear effect is the new component of convective transport. It
is accounted for by the expression
Ed Mc*

IR

Po fo
when Mc*/p§ > 10"?, i.e., this part of the nonlinear effect is manifested as a function of
the material concentration at the phase boundary, and in a number of cases can be assumed
to be unimportant [1].

The second part of the nonlinear effect is associated with the effect of induced veloc-
ity v, at the laminar boundary layer [5], leading to a variation in the concentration dis-
tribution in the diffusion boundary layer at the solid surface [6, 7], as well as to a mov-
ing gas—fluid phase surface [8, 9].

The nonlinear effect due to the large concentration gradient of the given material af-
fects similarly the multicomponent mass transfer when the concentration gradients of other
materials are not large.

The change in the hydrodynamic boundary layer [5] as a result of nonlinear mass trans-
fer affects similarly the rate of heat and mass transfer [10].

In gas—fluid systems with a moving phase boundary these effects are differently mani-
fested [8] in the gas and fluid phases in the case of single~component and multicomponent
mass exchange. Similar results are also obtained [11-13] when the fluid flows as a thin
film over a smooth vertical surface.

All these topics are the subject of the present review. It is shown below that the
direction of intense mass exchange affects heat and mass transfer.

Nonlinear Mass Transfer. The kinetics of nonlinear mass transfer is considered on the
example of longitudinal flow of a semi-infinite film within the boundary layer approximation
[7, 8]. The mathematical description of the hydrodynamics and of the mass transfer is

ou Py 0u | v

Lliﬁi-+-v———:: v s — =0,
dx Jy dy? o0x oy
"dc Jc d%
U b U = e x = 0, 4 = Uy, € = Cy,
ox + oy oy ° ¢ (3)
y=0, u=0,0=— ME ‘a-c—,czc*, Y—>o00, U=l C=Cy,
pg Oy

where one assumes longitudinal film flow by a potential flow with velocity u, and transported
material concentration cy,. The concentration ¢* at the solid surface is always constant as

a result of quickly established thermodynamic equilibrium, and the normal velocity component
is determined by expression (1) as a result of intense mass exchange.

The rate of mass transfer for a surface of length % is determined from (3) by averaging
the local mass flux:

!
J = ME(c* —¢y) :—i—j]dx, (4)
b
where k is the mass transfer coefficient, while I is found from (2):
MDp* ( de )
=] -
Po 0Y /g0

To solve (3) it is necessary to introduce the self-similar variables:

0,5
4 = 0,50pe®’, v=0,5 (EL:’CL) (ND' — @),

(5)

C = o Het — ) ¥, y—n ()77
o o 4Dx ’

where & =5¢%5, Sc=v/D, ®=Q(n), ¥ =T(n).
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In the new variables the problem (3) acquires the form:

CD'” _[_ 8_1(1)(1)1/ - O, 11,// _}_8@1111 —_ 0,

@ (0) = 0¥ (0), @’ (0) =0, D' () = i_ , (6)

¥(0)=1, (oo} =0,
where
M{c* —cy)
sk
€0g

is a parameter taking into account the effect of nonlinear mass transfer. Within the linear
theory of boundary layer diffusion 8 = 0.

H = (7

In the new variables it follows from (4) that

kI o* ol
Sh= " = — " —Pel.5 ¥ (), Pe = — . (8)
D oF (0 D
It is seen from (8) that the kinetics of mass transfer is determined from the dimen-
sionless diffusion flux ¥'(0), which can be obtained by solving problem (6). It can be
found in [7] by a perturbation method following the representation of & and ¥ in the form of
a power series in the small parameter 6:

(D=¢)0+e®1+62¢'2+---, 1P=‘P0+6‘If1+62‘1f2+... (9)
Thus, for ¥'(0) one can write;
2 4eps ¢
W) = — 2 45 2% +eZ(— o0 4 B0 ) (10)
Qg Po Po Po &g

where
3,01 S¢—0.35 — for gases,
o= {3,12 Sc9.3 — for fluids,
. j6,56 Sc—0.80 — for gases
s [5,08 Sc—0.67 _ for fluids,
24,0Sc—13 — for gases,
] 12,28¢— 1.0 — for fluids,
- 0,326 S¢—!.6 — for gases,
Pos = 0,035 S¢—1-! — for fluids.

P3s =

To verify the accuracy of the asymptotic theory problem (6) was solved numerically [8],
and the results obtained W&(O) are compared with the results of the asymptotic theory ¥'(0)
in Table 1. It is immediately seen that the direction of intense mass exchange affects sub-
stantially the kinetics of mass transfer, which cannot be foreseen within the approximate
linear theories (8 = 0). When the mass exchange is directed from the bulk to the phase
boundary (8 < 0), an increase in the concentration gradient leads to an increase in the dif-
fusion mass transfer. If the mass exchange is directed from the phase boundary to the bulk

(8 > 0), an increase in the concentration gradient leads to a decrease in the diffusion
mass transfer.

Analysis of Eqs. (6)-(8) shows that intense mass exchange affects the kinetics of mass
transfer by changing the hydrodynamics of the flow. As a consequence, similar variations
can be expected in the kinetics of mass transfer of other components for which the concen-
tration gradients are not very large.

Multicomponent Mass Transfer. The theory of diffusion in multicomponent systems [14,
15] shows that the independent diffusion approximation can be used both when the component
concentrations are low, and when the diffusion coefficients of the separate components are
close to each other. This makes it possible to consider, along with transfer of a component
with a large concentration gradient, transfer of the other n components for which the con-

centration gradient cj (i = 1,..., n) is not large. Thus, the system of equations (3) must
be augmented:
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TABLE 1. Comparison of Asymptotic Theory
Results with Numerical Experiments

e=1 e=10
8 . ,
—W 5 (0) —F " (0) —¥ n (0) —W (0)
0,00 0,664 0,664 0,314 0,305
40,05 0,641 0,641 0,248 0,250
—0,05 0,689 0,689 0,459 0,415
-+0,10 0,620 0,620 0,207 0,250
—0,10 0,716 0,716 —_— 0,581
+0,20 0,581 0,584 0,160 0,418
—0,20 0,779 0,776 — 1,080
--0,30 0,54& 0,555 — 0,808
—0,30 0,855 0,843 — 1,800
de; dc; d%c;
u—=+v—==D; 5 x =0, ¢; = ¢y
ox dy dy?
y=0,¢c=c¢ y—>,¢c;=co, i =1, ..., n. (11)
In the dimensionless variables (5) Eqs. (6) must be supplemented by
W 4 OW =0, W (0)=1, ¥;(00)=0, i=1, .., 1, (12)
where
{ e, \2
& = 80y O = (l) ;& =Sc}
&
(13)
v . . C; — Co; .
Sei=—my Wi=¥i()=—p——,i=1 ., n
Di C; — Cy;

The rate of multicomponent mass transfer in the gas (fluid) at the boundary with a
solid surface of length % is determined by the mean value of the mass flux

!
T, = Mk (cF — cor) = % [Fde, i=1, .o (14)
0
containing the convective component due to induced flow at the phase boundary:
I; = — M;D; (%\ + M; (cv)y=0 =
ay J y=0
(15)

:_MiDi[(aci> +Mi:Li (Ciﬁ> ], i=1, .., n
|\ 0Y /y—o Po 0y / y=o

An expression for the Sherwood number is obtained directly from (5), (13)-(15):

_m

C*

:PeO-s[qr; (0) + Be; ——— ¥ (0) J i=1, .., n,
4

i — Coi

Sh;
where ¥'(0) is calculated by (10), and to determine ¥;(0) it is necessary to solve the sys-
tem of equations (6) and (12). This solution was obtained [12] by an asymptotic method
while using for ¥; (i = 1,..., n) expansions similar to (9). Thus, one can write down for

¥, (0)

¥ (0) = — 2 1o 28,93 ——62[ 28 Qs (q—)-?’—-l— P )ﬂ

£Po; EPoPo; Q590 \Qo  ePo;

—82;2 (P;ai__ Si:_[’sszi }’ i=1, .., n,
€Qp Po; &2y 9g;

where

Po; = o (Sci); @3 = @5 (Sc;);

P33: = Paz (S¢;); 533i = 533 (Scy), =1, ..., n
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The accuracy verification of the asymptotic theory of multicomponent mass transfer (un-
der conditions of intense mass exchange of one of the components) was carried out by numeri-
cal solutlon of the problem (6) and (12). The Comparlson of the results of numerical experi-
ments W (0) with results of the asymptotic theory V. (0) is shown in Tables 2 and 3. It is
1mmed1ately seen that intense mass exchange of a 51ngle component from the bulk to the solid
surface (8 < 0) increases diffusional mass transfer for all components. These effects dif-
fer due to the difference in diffusion coefficient values for Sci = Sc, Wi(O) =y¥'(0), 1 =
1,..., n. In cases of intense mass exchange direction from the solid surface to the bulk
(9:>0), multicomponent mass transfer decreases. These effects are independent of the direc-
tion variable of mass exchange for components with small concentration gradients, and can be
used to control the kinetics of multicomponent mass transfer.

Analysis of Eqs. (3) and (11) shows that similar effects can also be observed in situa-
tions of heat transfer.

Heat Transfer. The effect of nonlinear mass transfer on the kinetics of heat transfer
is considered by us without taking into account thermal diffusion and diffusional thermal
conductivity [15]. Within the boundary layer approximation Eqgs. (3) must be supplemented

by:

ul@1—+-v—éi ::a~gié; x =0, t =ty
ox dy oy?
(16)
y=0, I =1% y-—>o00, { =1,
where t;, and t* are the temperatures in the bulk and at the solid surface, respectively, and
a is the coefficient of temperature conductivity.

The rate of heat transfer for a surface of length £ is determined by the mean value of
the local thermal flux

. 1y
Jt::@(fﬁ——%)::—?Aghdx, (17)
B
where the local thermal flux I+ also has a convective component:
/ot .
T,=—1 ___> + ode, (0f)yus,
: ( 3y ), Teoent Jy=o (18)

and A and cp are the thermal conductivity and heat capacity of the medium.

Equations (16) can be written in the self-similar variables (5):

T +@T"'=0, T(0) =1, T{c0) =0, (19)
where

t—t - D
T — T('r]) = e 0 y €y == &0, Oy — = Le_l. (20)
* — 1 a
To determine the kinetics of heat transfer it is required to find the Nusselt number while
using (17), (18), and (20):

TABLE 2. Comparison of the TABLE 3. Comparison of the
Asymptotic Theory with Nu- Asymptotic Theory with
merical Experiments. Numerical Experiments
e=l1 013=2 =2 e=20 03=0,5 ;=10
9 —w0) | —w; (o) 9 ) —w (0)
0,0 0,845 0,847 0,00 0,198 0,194
-+0,1 0,762 0,765 -+0,03 0,167 0,169
—0,1 0,943 0,945 —0,03 0,275 0,250
—+0,2 0,689 0,700 -+0,05 0,154 0,170
—0,2 1,060 1,061 —-0,10 0,132 0,234
-+0,3 0,633 0,652
—0,3 1,212 1,190
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kyl

Nu = 2L peos [T' (0) - b5 ——— " (0)} ,
A *—1

where the dimensionless thermal flux T'(0) is determined by solving the system of equations
(6) and (19), which was obtained by the asymptotic method of [14]:

T (0) = —

2 Ty 20Qst 92 26,03 P %Py 0484 Pst % Pas: ] .
2 P ( + T e 8 T 2 5 ’
€Pos PoPor @o Por \ Qo Pot @0 Pot EQoPo;

Qor= Qo (8-2¢), Par = P3(e-8y), Past = Pas(-84), Pagpe= Pgg(€-8¢).

The accuracy verification of the asymptotic theory of heat transfer under conditions of
intense mass exchange was carried out numerically [10]. It is seen from Table 4 that non-
linear mass transfer can increase or decrease heat transfer as a function of direction of
intense mass exchange. This effect is the complete analog to those observed in the cases of
nonlinear and multicomponent mass transfer under condition of intense mass exchange.

When nonlinear mass transfer is directed to the solid surface (8 < 0), heat transfer
increases with an increasing concentration gradient. Under conditions of intense mass trans-
fer from the solid surface to the gas (8 > 0) heat transfer decreases with increasing con-
centration gradient.

The effect of the direction of intense mass exchange on the heat transfer coefficient
and on nonlinear mass transfer can be used to control the rate of the heat transfer process
in gas—solid systems.

Nonlinear mass transfer in fluids does not affect heat transfer due to the large values
of the Lewis number (at ~ 1072), since the thickness of the diffusion boundary layer (where
nonlinear mass transfer occurs) is much smaller than the thickness of the temperature bound-
ary layer.

Mass Exchange in Gas—Fluid Systems. The kinetics of nonlinear mass exchange in gas—
fluid systems is considered within the diffusion boundary layer approximation for the cases
of uniflow gas and fluid motions with planar phase boundaries. If the gas and fluid are de-
noted as the first and second phases, problem (3) acquires the form

au; au,- 0Zuj Bu,» av]-
Uy — +vj—— = vj y —+——=0,
o0x dy dy? 0x dy
(21)
. 2 s
JQCL_}_U].QEJ_:DJ 0%; , =12,
0x dy oy?

with boundary conditions taking into account the continuity of velocities and momentum and
mass fluxes at the phase boundary:

x =0, Uj= iy, Cj= Cio, | =1, 2y =0, uy = thy,
0 Otly D,o¥ dc D.p¥ oc,
H‘l—u_lz 2 uiaclzxc?n 12:1 _l‘:'-'*p_2 »
dy dy pro 0y p20 0y
(22)
MD; oe;

Vj = — j=1 2, y—>o00, uy = ty,

b4
Pie Oy
Cy = C1o; Y—>— 00, Uy = Uy, Co = Cap-

The rate of mass exchange for a surface of length £ is determined by averaging the local
mass flux:

I 1 !
szm@w—x%y:%EAM=:Mm(ig_%0=hfgmm (23)
v X ;

0 0

where K; (j = 1, 2) are the mass exchange coefficients, and the local mass fluxes are de-
termineé from (3):

[, _ MDswf (éc_) i=1 2 (24)
=" 3 s y L
Y Jy=0
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TABLE 5. Comparison of the
Asymptotic Theory with Nu-
merical Experiments

TABLE 4. Comparison of the
Asymptotic Theory with Nu-
merical Experiments

=1 o= =2 gp=20:5 gy=1 0,=0,1 0,=0,15?
0 —Tp(0) —7(0) 0 —wiNO | =T
0,0 0,864 0,847 0,0 0,730 0,738
—+0,1 0,762 0,765 —0,1 0,§82 0,689
—0,1 0,943 0,945 -+9,1 0,785 0,787
40,2 0,690 0,700 —0,2 0,641 0,642
—0,2 1,063 1,059 +0,2 0,851 0,837
+0,3 0,633 0,652 —0,3 0,605 0,595
—0,3 1,212 1,190 ~+0.3 0,932 0,888

The Sherwood number can be determined directly from (23) and (24):

* -1 ! R
sh, — Kil ::__Jg;___ﬂ____g'(éka) dr, j=1, 2. (25)
D; 00 C10— Al20 § oy

The solution of problem (21) and (22) can be found by introducing the self-similar
variables:

. , s \D,5 .
5 = 0,5juio8sD; | vj = (— 1)1-10,5] (M) (LD — Dy,

x
01 = Cio— (— 7 (Cro — ¥ea) W5, Dy = D3 (%), Wy = s (L), (26)
. \0,5
(= 1y [ ) =X Se;= Y i1, 2
Li=( ) y<4Djx cj i j= D; i
As a result we obtain:
®@;" -+ je; ' ©;0; = 0, W) + 5,0, =0,
R , . 2 .
D;(0) = (— 1)) 0342 (0), @j (0) = —, ¥j(0) =0, j=1, 2
j&j (27)
. 8y .- ” _ € \2 .~
@, (0) = 20, — Dy (0), Dy (0) = — 0,56, (— =] @y (0),
g &y
W (0) = -5 Wi (0), Wy (0) + ¥a(0) = 1,
0
where
e o B o B
Uso 1 Uz €1010
6, — Mw—xw). . _ olops (Dzuza\°'5
232)(9;‘0 ngo o1 Djuyg
In the new variables we find from (25) for the Sherwood number
Shy = Pe}’ "W/ (0), Pej = ol , 1, 2. (28)
pl() Df

For quantltatlvp determination of the kinetics of nonlinear mass exchange one must de-
termine ¥:(0) (j = 1, 2) in (28), i.e., solve the system of equations (27). The solution
was obtaihed by a perturbation method following the representation of the functions sought
in the form of expansions in powers of the small parameters 6 « 1 (k = 1,..., 4). Accu-
rately up to the first approximation we have [8]

, 2 2
Wi (0) = — 1 . 612 1 .
81910 10 & Q1o (1 - ao)?
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_ 80amgy a0 20,915 | 80,8, as
81950 (1 -+ a)? cP?o (1 4 a,)? ne Qo (1 4+ @) ’

, 2 a 20 a
Yy (0) = — o= ——— — L L — 29
O =T e Ve +ap (29)
— 80,0805 2081915 G 80,8, ay =

Va (14+a)p Vagh(l+a)p a2 1T+a)s

When the rate of interphase mass exchange is limited by diffusion resistance in the gas,
xfeq > 0, i.e., a, > 0, one can write for the Sherwood number:

*®
Sy = g peb (2 - T, (30)
Pio €100 €190 Pro
When the process is limited by the fluid phase resistance, X/gq > =, a, > =, i.e.,
*
P2 o0,5( 2 | 80,089, 89.432)
Sh :——-‘_“Pe ’ —= ——————— T . 3
=P VETTR e, 1

Comparison of nonlinear effect in a gases and a fluid [9] shows that the ratio of
parameters 6; and 6, is:

. 26,05
6 _ Szpz;ox 1.
94 &1010
It acquires a minimum value in cases of well dissolved gases, when 6, is larger than 6, by
two orders of magnitude, i.e., for the numerical calculations one can always take 8, = 0.

Analysis of the results obtained (29)-(31) shows that the nonlinear effects are sub-
stantial when nonlinear mass exchange is limited by mass transfer in the gas phase (x/eg, =
0). For commensurate diffusion resistances (x/e, ~ 1) the nonlinear effects are substantial-
ly smaller, and their manifestation in the fluid phase is a result of the hydrodynamic effect
of the gas phase. These effects are totally absent when the process is limited by mass
transfer in the fluid phase.

The effect of direction of mass exchange on diffusion mass transfer in gas—fluid sys-
tems is similar to that observed in gas(fluid)—solid systems, i.e., diffusion mass transfer
with absorption is larger than diffusion mass transfer with desorption.

Numerical analysis [15] shows that the deviations of diffusion flux values in the cases
of absorption and desorption from the diffusion flux values for 6; = 0 are nonsymmetric if
the concentration gradients are identical in absolute value and only their directions are
opposite. This "contradiction" of the asymptotic theory (30) (where the deviations are
symmetric) is explained by the absence of quadratic terms (proportional to 63). Obviously,
the asymptotic theory requires a refinement taking into account all quadratic terms. When
nonlinear mass exchange is limited by mass transfer of the gas phase, problem (27) acquires
the form ]

: O] +e7 DD =0, O, + %07 D,D5 = 0, ¥; +8,D,¥; =0;
@, (0) = —0,%; (0), D2(0) =0, D;(00)= 8—2 D3 (c0) = ;1—
1 2

(32)

. , ” i 2 .
@10 = 20, 2 @5 0), @30 = — 050, )" ¥ 0
&1
¥, (0) = 1, ¥, (00) = 0.
The solution of problem (32) with account of all quadratic terms makes it possible to
determine ¥3(0):

. 2 2 1@y we 8?‘1P11 &9 2
W (0) = —2 40 +0, 2 4 o} (— + 2tp )
1 O) 8100 08Pl 9i0 de2¢l0 9o oo

(33)

+ 9%( 281?%3 _81‘1;133_ 4?9133) o+ 91(')3( €1P13 2@;13_ 25;13 + 4@13 ) ]
Pro P10 £1%10 oo P10 P10 &Qi1o

A number of functions of the Sherwood number appear in expressions (29)-(31) and (33):
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— ] E Va
Pro = ©o(Scy), Py3 = P3(Scy), Py = ) l/:—, ay = WAL ,

Sc, 8081 P1g
P11 = @1 (Sey) = 8,01 Scr %8 iy = @y (Scy) = 3,05 Sci ' 2%,
Prss = Pys (SC1)s Pugs = Pas (S€1), Purg = Pug (Sey) = Ser %,
Pizs = Pug (Sey) = 4,18 Sy '8,

Relationship (33) is the basic result of the asymptotic theory of nonlinear mass ex-
change in gas—fluid systems, and is in good agreement (Table 5) with the results of numeri-
cal solution ¥iN(0) of problem (32). The theoretical result (33) primarily shows that the
direction of intense mass exchange in gas—fluid systems affects its kinetics. This effect
is hydrodynamic, justifying the expectation of a similar effect in cases of multicomponent
mass exchange as well.

Multicomponent Mass Exchange in Gas—Fluid Systems. The kinetics of multicomponent mass
exchange in gas—fluid systems is of practical interest when the mass exchange of one of the
components is intense and is limited by mass transfer of this component in the gas phase.

Consider n components, for which mass exchange does not affect the hydrodynamic flow.
For low concentrations cj5 (i = 1,..., n; j = 1, 2) of diffusing materials and not substan-
tially different diffusion coeff1c1ents D4 =1,..., n; j=1, 2) the theory of multi-
component mass exchange can be treated w1tﬂ1n the independent diffusion approximation [14,
15]. For this purpose it is necessary to substitute c, = c,, into (21) and (22) and sumpple-
ment the transport equations for components with low concentration gadients:

2. .
uj s (2 0cis _ Dﬁﬂ; x =0, ;5 = Cijo;
Jx Jdy ay?
oc; oc;
¥y =0, ¢i1 = YiCss, _Dil—l + vy = — Dy —= 2,
oy ay

Y —> 00, Cjy = L4105 Y—>— 00, Cyp = Cyao.
In dimensionless variables, (26) and (32) must be supplemented:
Wi+ jei®¥; =0, Wiy (0) 4+ ¥iun(0) =1,
Wi (0) = 0w, (0) -+ 6,0yt {‘P (0)— ——i———J i (0), (34)
Cizo — Xifi20

Yi(e0)=0,i=1, .., n; j=1, 2,

i

where

Cs;3 — Cii
¥ij = Vi () = — (— xaf 7 =
Ci10 — %iCiz0
D; UonD;\ 055 D;
aioz_ﬁ(_@__l) = D1
Dy \ w30D2 i
and x5 (i = 1,..., n) is the Henry number for the separate components.

The solution of problem (34) was found by a perturbation method with account of the
fact that the functions @5 (j = 1, 2) depend only on the three small parameters b (k =
1, 2, 3).

The equations for the rates of multicomponent mass exchange are
!

Tis = MiKiixi ™ (Civo — YiCing) = — —;— g I;dx,
0
aCz] o
Ly = — MDu 5 GRS LA
BY } y=o
Shy; = Rl o Pej {Iyi;‘ (0) +
iJ
(2 — 1) 88505 (0) [—C— —w, (0)]}, Pty =1 2,
Cizo — XiCizo0
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From (35) one obtains an expression for the Sherwood number:

Sty = —Pel"* | ¥4 0) + 01 (0| 10—~ 0) |},
Cizo — ACiao (36)
Shyy = —Peg’® ¥, (0), i =1, ..., 7,
where for ¥1(0) and for ¥;,(0) one must use the zeroth approximations:
OO (0) = ——2— , Wy (0) = ——, i= 1, ..., 1,

€1%10 I +a;

while ¥;;(0) and ¥;,(0) are obtained by solving problem (34):
. 2 1 20 1
— ¥ (0) = 2 ;
&P l+a  agiPros (14 a)
862a8i2@2 a; { 200319131 1 €118 ( 2 . Ci10 )] .
e1®10; Vs (1 + ;)2 Pro@ior (1+@2 @l +a)\ 14a  cup— XiCizo
(37)
. -.P,L'Q (O) QV@ a; 29_1:1/6;2‘ a; + 80206852_@2 a? X [2 Vg_; €i1P13i a; _
Va 1+4g Vi agy; (1+ a)? Va  (1+a)? Va g (14 a)?
_V&;Si’iﬁmi % ( | S Ci1 )jl ,i=1, .., n
Va 14-a; \ 14a Cirg — XiCizo

Functions of the Schmidt number appear in (37):

— — . - Va

Puos = Py (811), Prai = B3 (1), Piz = m ,
a; = ﬂ’—:—: 8= Ve, si=s8ity, i=1, .., i; j=1, 2

P10:818i9 V Qg
When mass exchange is limited by mass transfer in the gas phase, xji/eij, > 0, one can

substitute in (37) aj = 0, i = 1,..., n, and expression (36) for Sh;, acquires the form:

" A %augm ), i=1, ..., n (38)
81Prer  XE,1P10: P10P10:

If mass exchange is limited by mass transfer in the fluid phase, xj/ej, » ®, one can
substitute in (37) azl =0, i=1,..., n, and expression (36) for Shj, acquires the form:

Shw:PeS'S( Woaw 8"2"‘%%), i=1, . (39)

Shy, = Pe}’® (

Va Va
When the diffusion resistances of both phases are commensurate (xj/ejo, ~ 1), it follows
from (37) that an increase in the large concentration gradient (6;) leads to an increase in
diffusion mass transfer in the gas phase and to a decrease in the diffusion mass transfer in
the fluid phase.

It is seen from (39) that when multicomponent mass exchange is limited by mass transfer
in the fluid phase the nonlinear effect in the gas does not affect the rate of the process.

Mass Exchange in Gas—Discharging Film Svstems of Fluid—Solid Surface. The theoretical
results obtained so far show that nonlinear effect are of practical importance in gas—fluid
systems, when intense mass exchange is limited by mass transfer in the gas phase. Under
these condition nonlinear mass exchange between the gas and the discharging fluid film is
described by the equations of motion in the fluid and the gas, and by the equation of con-
vective diffusion in the gas.

At the film surface one must match the tangential components of the velocity, the
stress tensor, and the mass flux in the fluid and in the gas. The normal velocity component
of the fluid vanishes (the '"nonflow" condition of the fluid film), while the normal velocity
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component of the gas is equal to the induced flow velocity as a result of intense mass ex-
change.

Starting from the considerations above, it was shown in [11] that by using the dimen-
sionless variables

X:ﬁﬂyg*i,?:tﬂﬂﬁaﬁhl,Ungzﬁﬂvm;W: L
{ h() o hn Up Egllp
U, V)= —2— 7 9=, (40)
y ety
- 5 -
'C: NC—XCO1 € ho » Up = gho ’ ~0 :—6" ’8: ( ?l )0 5’
Co — XCo ! v ! o

within the zeroth approximation in the small parameters €, and 6,, 05 one obtains the four
mutually related problems:

awzzﬁg,ﬂ£+ﬁzzﬁ Y=0, U=0, V=0
Y2 0X oY
Y -1, 510} ::62< aq )f=% (41)
oY Y

xoi., Y o
0X

H'UX, Hy=V (X, H); X—>Lo, H—1;

(42)
- T . al 320 . 7
7 00 L7 aINJ _ & ONU 8 HT 6~U;
0X oY a2 oY
U | 9V _sq 9 x_0 v=1,
0X ay )4
- (43)
- - oC o
=0, U=0U(X, H), V=—0,——+ 8HT;
oY
?——»-OO, U=1
. . .
~ oC e ac;’ :aﬂc 4 8, HT ac’
aX oy  ave Y
(44)
X=0 C=1 V=0, C=0, Yoo, C=1,
[ - iV *
Lo=-= b=t Gem Vg, VDL
l 8 D Agtig0g
(45)
8, = LNLO ; 0y = Hﬁo’ 63:4{;(00“”00)
2N 16y 00

In expressions {(40) and {45) x and y are the longitudinal and transverse coordinates,
u, v and 4, ¥ are the velocity components in the film and in the gas, h is the film thick-
ness, ¢ is the concentration of the absorbing material in the gas, G, is the velocity of the
potential flow in the gas, hy is the film thickness in the Nusselt theory, and u, 1 and v,
v are the dynamic and kinematic viscosity coefficients of the fluid and of the gas.

The problems (41) and (42) can be solved accurately within an arbitrary function, which
can be determined following solution of the problem (43), (44):

U:——;—Yz+[3H+62( o )

Y’
Y /¢ o] (46)
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- _1—[3H'+eg-ﬂ- (Eﬁ—’) ]YZ;
2 dX \aY /s
1 . (o0 (47)

H3=1——62( N) .
2 oY /vy

In (46) 6, is a small parameter, i.e., U in the zeroth approximation in 6, can be substi-
tuted into (46). This makes it possible to solve (43) within the zeroth approximation in
8,. For this purpose one must substitute into (43) U(X, H) within the zeroth approximation
in the small parameter 6,, i.e.,

U(X, H):-i;’—, (48)

which is obtained from (46) and (47) by substituting 6, = 0.

The velocity and concentration distributions in the gas can be found from (43) and (44)
for the self-similar variables:

1

U =050, V=005¢ ==

(ncp'—cp), Ge1—,

¥

—, &=Sc"".
2VX

O=0m), Y="(m), n=

Thus, from (43) and (44) one obtains directly:
@+ &OY =0, ¥4+ eDY =0,
D (0) = — O~ (0), @' (0) = 36,1, D' (00) = Fe~?, (49)
T0)=1, P(co)=0
The rate of mass transfer is determined by the Sherwood number, which can be obtained
similarly to (28). In the new variables this expression acquire the form
thol

~

~

Sh= £ Peo.5 9 (0), Pe = —
Po

where ¥'(0) is the solution of problem (49). For practically interesting cases the parame-

ters 8, and 8; in (39) are small, which makes it possible to use a perturbation method [12],

as was done to obtain (33):

?

, 2 30, , 20 ' Oe
— W (0) = e T gy [ ST
£G, ey ks 4
- . —_ — (50)
9 983(P1 2 4([‘3 Qyg 4@33 \ 6.0 9({)3 3@13 3(913
=3 o>+63 el el Rl v Sy b
2a%ep;  16a%p; CRe) e £ aEPy ey  QEQ

Thus, one can also obtain the final expressions for the film velocity and thickness:

U=——§—Y2+{3H+:@E_—}Y,
‘ VX (51)
V:——l—[w'—- R _JYZ,
2 2e X1 X
where H is determined from:
of
Hoe=1——2_ (52)
Be Y X

Several functions of the Schmidt number appear in (50): @ = @0 (5c), @ =01 5c), 92 =9, (50), @5 =
(p;(gc), Q33 = (ps;(gc), Pys = E633 (gc), P1s = P13(5C), P13 = P13 (Sc).

The accuracy of the asymptotic theory results was established [11] by numerical solu-
tion of the problem (49).
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A difference in the mass transfer rates in absorption and desorption processes of well
dissolved gases was observed experimentally by a number of authors [16-19]. This has been
always explained by the Marangoni effect, i.e., by the hydrodynamic effect resulting from
induced secondary flow, whose velocity is tangential to the interphase surface. This flow
is generated by the surface tension gradient resulting from the nonuniform temperature dis-
tribution and (or) concentration at the interphase surface.

A theory has been suggested in the present paper, explaining these experimental results
by using the nonlinear effects generated as a result of induced secondary flows, whose ve-
locity is normal to the phase boundary. The secondary flows are induced by the large mass
fluxes.

Explanation of the mass transfer mechanism in cases of intense mass exchange requires
experimental data on absorption and desorption and comparative analysis of these data by
means of the theories of nonlinear mass transfer and the Marangoni effect. In this context
it is also interesting to determine the effect of normal secondary flows (as a result of in-
tense mass exchange) on hydrodynamic flow stability at the interphase surface.

Multicomponent Mass Exchange between Gas and a Fluid Film. A number of experimental
studies are available in the literature {18, 20, 211, where as a result of parallel mass ex-
change in gas—fluid and fluid—fluid systems mass transfer of a single component leads to a
change in mass transfer of another component. In these cases one usually observes an in-
crease in the rate of mass transfer, which has been explained by the Marangoni effect, as it
cannot be explained by means of linear mass transfer theory.

This effect has been treated [13] as multicomponent mass exchange when the concentra-
tion gradient of one of the components in the gas phase affects the flow hydrodynamics, i.e.,
as a nonlinear effect.

Let ¢; and ci (i =1,..., n) be, respectively, the component concentrations in the gas
and in the fluid, whose mass transfer does not affect the flow hydrodynamics. The distribu-
tion of these concentrations is determined from

Ti=yiCoi+ (Coi—iCe:) Ci,
¢1=Coi -+ (Coi/yi—Cai) Ci, i=1, ..., 1, (53)
where Cyq and cg4 are the initial concentrations of absorbing (desorbing) material in the
gas and in the fluid.

It was shown in [13] that when mass exchange is limited by mass transfer in the gas
phase, the concentration distribution can be obtained from the expressions Cy =1-—-%;:(n),
i=1,..., n, where ¥; are found by solving the problem

V42,0V, =0, ¥;(0)=1, ¥;(c0)=0, i =1, ..., n. (54)

In (54) a; = e;/g, while ®(n) takes into account nonlinear mass transfer in the gas phase
and is the solution of Eq. (49). The solution of problem (54) was found in [13] by an
asymptotic method, while for Wi(O) one obtains an expression similar to (50):

ST Y S YL T ( Sty S 95?5‘*’“‘)
&Qo; xePy; 2@ Po; 4qy; 20%eqy;  16a2qE;
4—6%(?Eﬂhm”—} 25%%[»_» O - 4&Emi>_+ (55)
20000 Epows;  EPQRGN:  elgopqs
3a;

+ 665 [(P:si(l—]' - \) +(pl3i—(_pl3i] v i=1, ., n

P
2@ Py; o

where
Po: = Po (Sc2), 91; = ¢ (Scy), @a: = @5 (S¢y), Bgi = @5 (S¢y),
Pssi = Po3 (SC2),  Past = P (Scs), Pusi = Pug (Scy),
Puai = @15 (Scy), i =1, ..., n.

Comparison of Wi(O) from (55) with ¥'(0) from (50) shows that they differ little due to
the nonsubstantial difference between the quantities € and €. It hence follows that in
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cases of multicomponent mass transfer, when mass transfer of one of the components is non-
linear due to the large concentration gradient, the mass transfer coefficients for all com-
ponents have similar values.

Expression (55) makes it possible to calculate [13] the Sherwood number when mass ex-
change is limited by mass transfer in the gas:

~

- 0.5
Sn, = Kil _ pe2s wi0).
D;

It was shown in [13] that when mass exchange is limited by mass transfer in the film,
one can write for the concentration distributions:

D.l H—Y
Dy B X i n 56
e Vo (56)

where U, V, and H are determined from (51) and (52), C; are determined from (53), and Fo and
Y; are:

Foi =

+ HU—V aC, _ &C
VTFo, oY, oY}
Yi::OyCi: I V=00, C; =0, i=1,

. X=0, C; =0

Denoting 6,; = Foj, i = 1,..., n, within the first approximation in the small parameters 8,
and 6, (i = 1,..., n) Eq. (56) acquires the form

o aC; aY; oC; 02C; .

== + 0, ——= f—= 5y i=1, .., n

26y X 4eXVX oY, 9Y?

The concentration distribution can be found in the form
Ci=Cpi+0,:C1i+0sCo+..., i=1, .., 1

Thus [13], within the zeroth approximation one obtains directly

|5t —ourd o,

: 3Y7 \™°
C,; =erick, &= ,i=1, .., n, (57)
01 T E g (8X)
and in the first approximation (by means of the Green's function):
2
Cy; = (YVX—{— )exp( 3V, ) Cyy=0,i=1, .., 1 (58)
1/5:: 2VX 8X

From (57) and (58) one can also determine the Sherwood number, when multicomponent mass
exchange is limited by mass transfer in the fluid:

Sh; :il _peﬁl'fils /EEL) dxX =
D; T &ayi e

. '_6Pei )0'5 1_ Foi )
( 7 ( 9 )

Tt is seen from (59) that within the zeroth approximation in the small parameter 8,0;
nonlinear mass transfer in the gas phase does not affect multicomponent mass transfer in a
fluid film. It has been shown in [13] that for very large concentration gradients one must
also take into account the first approximation in the small parameter 6,8;.

(59)

The basic conclusions from the asymptotic theory results of nonlinear mass transfer in
systems with intense mass exchange can be reduced to the following:

1. Intense mass exchange (as a result of large concentration gradients) induces sec-
ondary flows, affecting the coefficients of nonlinear mass transfer, multicomponent mass

transfer, and heat transfer.
2. The direction of mass flux during intense mass exchange affects heat and mass trans-
fer.

3. When the mass flux is directed from the bulk of the phase to the interphase surface,
an increase in the concentration gradient leads to an increase in diffusion mass transfer,
multicomponent mass transfer, and heat transfer.
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4., When the mass flux is directed from the interphase surface to the bulk of the

phase, an increase in the concentration gradient leads to a decrease in diffusion mass
transfer, multicomponent mass transfer, and heat transfer.

5. Induced secondary flows at the phase separation boundary affect the hydrodynamics

of a laminar boundary layer during both blowing in and suction, i.e., intense mass exchange
can affect the hydrodynamic flow stability at the interphase boundary and can be a cause
for generation of turbulence.

W=

[ =
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